If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x-36+3x^2=0
a = 3; b = 6; c = -36;
Δ = b2-4ac
Δ = 62-4·3·(-36)
Δ = 468
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{468}=\sqrt{36*13}=\sqrt{36}*\sqrt{13}=6\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{13}}{2*3}=\frac{-6-6\sqrt{13}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{13}}{2*3}=\frac{-6+6\sqrt{13}}{6} $
| k^2-162=9k | | 4χ²-12x=0 | | 5x+24=76 | | 5(t+10)=35 | | 1-5x-2x=-6 | | 12a-a+6=2 | | 3{3u-6}=18 | | (x+5)+7=18 | | 756=450+0,5x(x+1) | | t+17=3* | | 3/4=-11/4a | | 24x4+21=4 | | 7n+5=20 | | 6x1/2-5x1/4-6=0 | | x+x+(x-26)+(x-26)=360 | | 3c+1/2=11/12 | | 7x-35=3x-2 | | 3x+4(x-2)-6=0 | | 2(x+2)+5(x+2)-3=0 | | 13x+5x=-90 | | 63-3+1.5x=x | | 2=4x+1=5x-2 | | 1/x+x/2=11/6 | | 2=4x+51=5x-2 | | (X^2+3x)^2+5(x^2+3x)+4=0 | | 24=n−25 | | 9x-17,4=5x+1,4 | | 6z+8=20-4z | | x*x=9/25 | | 2x+-17=x+10 | | x+x/2=180° | | 7w=(5)(21) |